Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy
نویسندگان
چکیده
We applied hyperspectral imaging to measure spatially-resolved diffuse reflectance spectra in the visible range and an iterative inversion method based on forward Monte Carlo modeling to quantify optical properties of two-layered tissue models. We validated the inversion method using spectra experimentally measured from liquid tissue mimicking phantoms with known optical properties. Results of fitting simulated data showed that simultaneously considering the spatial and spectral information in the inversion process improves the accuracies of estimating the optical properties and the top layer thickness in comparison to methods fitting reflectance spectra measured with a single source-detector separation or fitting spatially-resolved reflectance at a single wavelength. Further development of the method could improve noninvasive assessment of physiological status and pathological conditions of stratified squamous epithelium and superficial stroma.
منابع مشابه
Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media.
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is ...
متن کاملQuantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging.
Absorption (mu(a)) and reduced scattering (mu(s)') spectra of turbid media were quantified with a noncontact imaging approach based on a Fourier-transform interferometric imaging system (FTIIS). The FTIIS was used to collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially resolved reflectance data from Monte Carlo simulations were fitted to the recorded...
متن کاملBroadband ultraviolet-visible optical property measurement in layered turbid media
The ability to accurately measure layered biological tissue optical properties (OPs) may improve understanding of spectroscopic device performance and facilitate early cancer detection. Towards these goals, we have performed theoretical and experimental evaluations of an approach for broadband measurement of absorption and reduced scattering coefficients at ultraviolet-visible wavelengths. Our ...
متن کاملBroadband absorption spectroscopy of turbid media using a dual step steady-state method.
We present a method for the determination of the absorption coefficient of turbid media in a broad wavelength range with high spectral resolution using a dual step method. First, the reduced scattering coefficient is determined for a few wavelengths with spatially resolved reflectance measurements. The reduced scattering coefficient for the intermediate wavelengths is interpolated by fitting a ...
متن کاملExtension of the Stokes equation for layered constructions to fluorescent turbid media.
Expressions relating the bispectral reflectance of a stack of n fluorescing layers to each individual layer's reflectance and transmittance are derived. This theoretical framework is used together with recently proposed extensions of the Kubelka-Munk model to study the fluorescence from layered turbid media. For one layer over a reflecting background, the model is shown to give the same results...
متن کامل